
INTEGRATED CIRCUITS

Short Form Preliminary specification

1996 Aug 01

P83C524

FEATURES

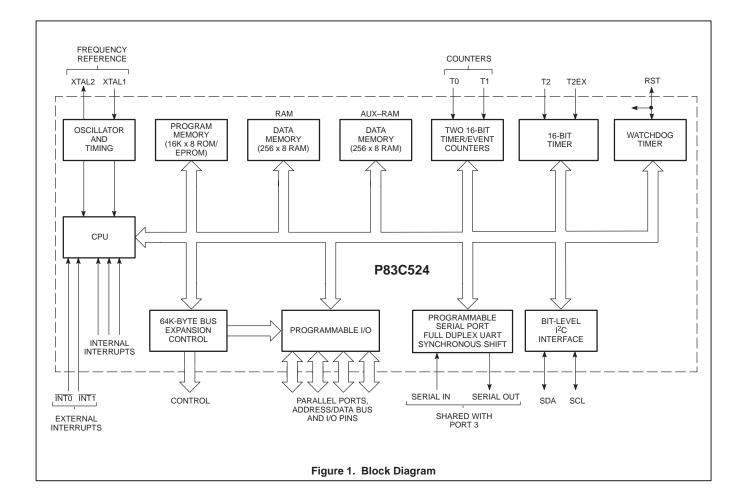
- 80C51 CPU
- 16 kbytes on-chip ROM, expandable externally to 64 kbytes Program Memory address space
- 512 bytes on-chip RAM, expandable externally to 64 kbytes Data Memory address space
- Four 8-bit I/O ports
- Full-duplex UART compatible with the standard 80C51 and the 8052
- Two standard 16-bit timer/counters
- An additional 16-bit timer (functionally equivalent to the timer 2 of the 8052)
- On-chip Watchdog Timer (WDT) with a separate on-chip oscillator
- Bit-level I²C-bus hardware serial I/O Port
- 7-source and 7-vector interrupt structure with 2 prioirty levels
- Up to 3 external interrupt request inputs
- Two programmable power reduction modes (Idle and Power-down)
- Termination of Idle mode by any interrupt, external or WDT (watchdog) reset
- Wake-up from Power-down by external interrupt, external or WDT reset
- ROM code protection
- XTAL frequency range: 1.2MHz to 16MHz
- All packaging pin-outs fully compatible to the standard 8051/8052.

GENERAL DESCRIPTION

The P83C524 8-bit microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The P83C524 is a stand-alone high-performance microcontroller designed for use in real time applications such as instrumentation, industrial control, medium to high-end consumer applications and specific automotive control applications.

The P83C524 contains a non-volatile $16K \times 8$ read-only program memory, a volatile 512×8 read/write data memory, four 8-bit I/O ports, two 16-bit timer/event counters (identical to the timers of the 80C51), a 16-bit timer (identical to the timer 2 of the 8052), a multi-source, two-priority-level, nested interrupt structure, two serial interfaces (UART and bit-level I²C-bus), an on-chip oscillator and timing circuits, a watchdog timer (WDT) with a separate on-chip oscillator. For systems that require extra capability, the P83C524 can be expanded using standard TTL compatible memories and logic.

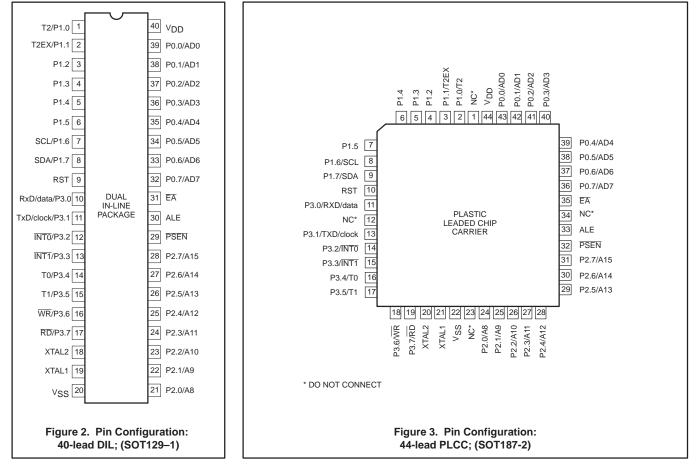
The device also functions as an arithmetic processor having facilities for both binary and BCD arithmetic plus bit-handling capabilities. The P83C524 has the same instruction set as the PCB80C51 which consists of over 100 instructions: 49 one-byte, 46 two-byte and 16 three-byte. With a 16MHz crystal, 58% of the instructions are executed in 750ns and 40% in 1.5μ s. Multiply and divide instructions require 3μ s.



EXTENDED TYPE			PACKAGE	TEMPERATURE	FREQUENCY	
NUMBER	PINS	PIN POSITION	MATERIAL	CODE	RANGE (°C)	(MHz)
ROM (Note 1)						
P83C524FBP	40	DIL	plastic	SOT129-1	0 to +70	1.2 to 16
P83C524FFP	40	DIL	plastic	SOT129-1	-40 to +85	1.2 to 16
P83C524FHP	40	DIL	plastic	SOT129-1	-40 to +125	1.2 to 16
P83C524FBA	44	PLCC	plastic	SOT187-2	0 to +70	1.2 to 16
P83C524FFA	44	PLCC	plastic	SOT187-2	-40 to +85	1.2 to 16
P83C524FHA	44	PLCC	plastic	SOT187-2	-40 to +125	1.2 to 16

ORDERING INFORMATION

NOTE:


1. For EPROM types, refer to the 87C524 data sheet.

P83C524

PINNING INFORMATION

Pinning

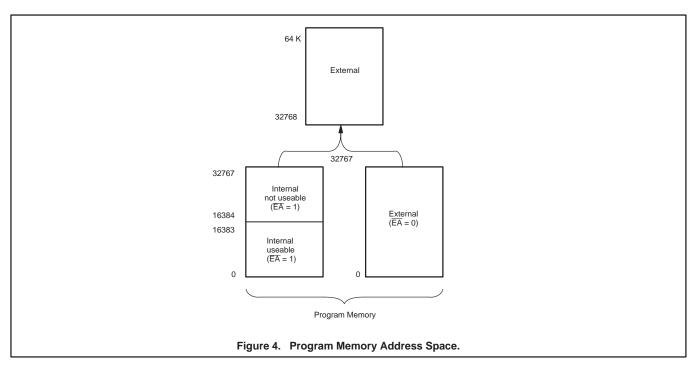
P83C524

PIN DESCRIPTION Т

PINEMONIC DIP PLCC TYPE NAME AND FUNCTION P1.0-P1.7 1-8 2-9 I/O Port 1: 8-bit quasi-bidirectional I/O port. Port 1 can sink/source one TTL (4 LS TTL) ing drive CMOS inputs without external pull-ups, except P1.6 and P1.7 which have open of Port 1 alternative functions: 1 2 1 T2 (P1.0): Timer/event counter 2 external event counter input (falling edge triggered). 7 8 I/O SCL (P1.9): Timer/event counter 2 external event counter input (falling edge triggered). 7 8 9 I/O SCL (P1.9): Timer/event counter 2 external event counter input (falling edge triggered). 7 8 9 I/O SCL (P1.7): Timer/event counter 2 external interrupt 2 input (triggered). 7 8 9 I/O SCL (P1.7): I/C serial port dock line. 8 9 I/O SCL (P1.3): Dro veriflow, this pin is pluted HGH while the internal reset using only a capacitor con V_po. After a VDT overflow, this pin is pluted HGH while the internal reset triggered). 9.0-P3.7 10-17 11, 12.00 I/O Port 3 alternative functions: Xz0/date (P3.0): Serial Port data input (asynchronous) or data input/output (synchronous 12.01 10 11 I RX0/data (P3.0): Serial Port data i	
P1.0-P1.7 1-8 2-9 (1 NC) I/O (1 NC) Port 1: 8-bit quasi-bidirectional I/O port. Port 1 can sink/source one TTL (4 LS TTL) inp drive CMOS inputs without external pull-ups, except P1.6 and P1.7 which have open dr Port 1 alternative functions: T2 (P1.0): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (trigger ed). SCL (P1.1): F2C serial port clock line. SCL (P1.1): Timer/event counter 0 capture intervent counter 0. No. After a WDT overflow, this pin is pulled HIGH while the internal reset signal is acti VD. After a WDT overflow. This pin is pulled HIGH while the internal reset signal is acti P3.0-P3.7 P3.0 P10 I/O Reset: A HIGH level on this pin is pulled HIGH while the internal reset signal is acti VD. After a WDT overflow. This pin is pulled HIGH while the interval reset signal is acti P3.0-P3.7 P3.0 P11 I Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. P3.0 P11 I I Port 3: External interrupt 0 or gate control input	
Image: space of the system Image: space of the system <th< td=""><td></td></th<>	
1 2 1 T2 (P1.0): Timer/event counter 2 external event counter input (falling edge triggered). T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (triggered). 7 8 I/O SCL (P1.6): I ^A C serial port dota line. 8 9 I/O SDA (P1.7): I ^A C serial port data line. RST 9 10 I/O Reset: A HIGH level on this pin for two machine cycles while the oscillator is running, r device. An internal pull-down resistor permits power-on reset using only a capacitor con vDp. After a WDT overflow, this pin is pulled HIGH while the internal reset signal is acti P3.0–P3.7 P3.0–P3.7 10–17 11, 13–19 I/O Port 3: ebit quasi-bidirectional I/O port with internal pull-ups. Port 3 alternative functions: 10 11 1 RXD/data (P3.0): Serial Port data input (asynchronous) or data input/output (synchronou TxD/clock (P3.1): Serial Port data output (asynchronous) or clock output (synchronou 11 (P3.2): External interrupt 1 or gate control input for timer/event counter 1. 14 16 I T0 (P3.4): External input for timer/event counter 0. 17 1 T1 (P3.5): External input for timer/event counter 0. IT (P3.5): External input for timer/event counter 0. 13 15 I INTT (P3.2): External input for timer/event counter 0. 17 19 O RD (P3.7):	
2 3 I T2EX (P1.1): Timer/event counter 2 capture/reload trigger or external interrupt 2 input (triggered) 7 8 I/O SCL (P1.6): PC serial port clock line. 8 9 I/O SDA (P1.7): I ² C serial port data line. RST 9 10 I/O Reset: A HIGH level on this pin for two machine cycles while the oscillator is running, r. device. An internal pull-down resistor permits power-on reset using only a capacitor cor V _{DD} . After a WDT overflow, this pin is pulled HIGH while the internal reset signal is acti I2 ND P3.0–P3.7 10–17 11, 13–19 I/O Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. 10 11 I RxD/data (P3.0): Serial Port data input (asynchronous) or clock output (synchronous 12 NTD (P3.4): External interrupt 0 or gate control input for timer/event counter 0. 11 13 15 I INTT (P3.5): External input for timer/event counter 1. 14 16 1 TO (P3.4): External data memory write strobe. RTD (P3.7): External data memory write strobe. 17 19 O Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left clock generator. Receives the external oscillator clock signal when an external oscillator RAWiROM) that use 16-bit addresses (MOVX @DTR) Port 2 emit	
rg 8 I/O SCL (P1.6): I ² C serial port clock line. RST 9 10 I/O Reset: A HIGH level on this pin for two machine cycles while the oscillator is running, r device. An internal pull-down resistor permits power-on reset using only a capacitor con V _{DD} . After a WDT overflow, this pin is pulled HIGH while the internal reset signal is activate a WDT overflow, this pin is pulled HIGH. P3.0–P3.7 10–17 11, 1 I/O Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. P10 11 I RXD/date (P3.0): Serial Port data input (asynchonous) or clock output (synchronous 122 14 13 O TXD/clock (P3.1): Serial Port data output (asynchonous) or clock output (synchronous 122 12 14 I INT1 (P3.2): External interrupt 0 or gate control input for timer/event counter 0. 13 15 I INT1 (P3.3): External interrupt 1 or gate control input for timer/event counter 1. 14 16 18 O WR (P3.6): External data memory write strobe. 17 19 O RD (P3.7): External data memory read strobe. The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH. XTAL2	falling odgo
8 9 I/O SDA (P1.7): I ² C serial port data line. RST 9 10 I/O Reset: A HIGH level on this pin for two machine cycles while the oscillator is running, r device. An internal pull-down resistor permits power-on reset using only a capacitor con V_D_D. After a WDT overflow, this pin is pulled HIGH while the internal reset signal is acti P3.0–P3.7 10-17 11, 13-19 I/O Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. 10 11 1 RxD/data (P3.0): Serial Port data input (asynchonous) or clock output (synchronous 12 14 16 TXD/clock (P3.1): Serial Port data output (asynchonous) or clock output (synchronous 171 (P3.3): External interrupt 0 or gate control input for timer/event counter 0. 17 19 O T1 (P3.5): External interrupt 1 or gate control input for timer/event counter 1. 16 18 O WR (P3.6): External input for timer/event counter 1. 17 19 O Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used. XTAL1 19 21 I Crystal input 2: Output of the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal	alling euge
RST 9 10 I/O Reset: A HIGH level on this pin for two machine cycles while the oscillator is running, r device. An internal pull-down resistor permits power-on reset using only a capacitor cor V _{DD} . After a WDT overflow, this pin is pulled HIGH while the internal reset signal is acti P3.0–P3.7 10–17 11, 13–19 (12 NC) I/O Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. Port 3 can sink/source or LS TTL) input. It can drive CMOS inputs without external pull-ups. 10 11 1 I/O Port 3: 8-bit quasi-bidirectional I/O port with internal pull-ups. 11 13 0 TXD/clock (P3.1): Serial Port data input (asynchronous) or data input/output (synchronous) 12 14 1 INTO (P3.2): External interrupt 0 or gate control input for timer/event counter 0. 13 15 1 INTT (P3.3): External input for timer/event counter 0. 16 18 0 WR (P3.5): External data memory write strobe. RD (P3.7): External data memory read strobe. The generation or use of a Port 3 pin as an alternative function is carried out automatic P33C524 provided the associated Special Function Register (SFR) bit is set HIGH. XTAL2 18 20 O Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left core (A8 to A15) VSS 20 22 I	
Best State Second State <td></td>	
13-19 (12 NC)LS TTL) input. It can drive CMOS inputs without external pull-ups.10111Port 3 alternative functions: RxD/data (P3.0): Serial Port data input (asynchronous) or data input/output (synchronous) 1211130TxD/clock (P3.1): Serial Port data output (asynchronous) or clock output (synchronous) 1212141INTT (P3.2): External interrupt 0 or gate control input for timer/event counter 0.13151INTT (P3.3): External interrupt 1 or gate control input for timer/event counter 1.14161T0 (P3.4): External input for timer/event counter 0.15171T1 (P3.5): External input for timer/event counter 1.16180WR (P3.6): External data memory write strobe.17190RD (P3.7): External data memory write strobe.XTAL218200Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL119211Crystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator (RA to A15)PSEN29320Program Store Enable output: Read strobe to external program memory via Port 0 a is activated wice each machine cycle during fetches from external program memory. We executing out of external program memory. PSEN can sink source 8 LS TTL) input. It can drive CMOS	nnected to
13-19 (12 NC)LS TTL) input. It can drive CMOS inputs without external pull-ups.10111Port 3 alternative functions: RxD/data (P3.0): Serial Port data input (asynchronous) or data input/output (synchronous) 121113OTxD/clock (P3.1): Serial Port data output (asynchronous) or clock output (synchronous) 121315IINTT (P3.2): External interrupt 0 or gate control input for timer/event counter 0.1416IT0 (P3.4): External interrupt 1 or gate control input for timer/event counter 1.1517IT1 (P3.5): External input for timer/event counter 0.1618OWR (P3.6): External data memory write strobe. RD (P3.7): External data memory write strobe.RTAL21820OCrystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator (R4 to A15)Vss2022IGround: Circuit ground potential.P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external read and when an external program memory. We executing out of external program memory via Port 0 a is a clasted twice each machine cycle during fetches from external program memory. We executing out of external program memory. We executing out of external program memory. We executing out of external program memory.	e TTL (=4
10111RxD/data (P3.0): Serial Port data input (asynchonous) or data input/output (synchronous) 1211130TxD/clock (P3.1): Serial Port data output (asynchronous) or clock output (synchronous) 1212141INT0 (P3.2): External interrupt 0 or gate control input for timer/event counter 0. INT1 (P3.3): External input for timer/event counter 0.13151INT1 (P3.3): External input for timer/event counter 0.14161T0 (P3.4): External input for timer/event counter 0.15171T1 (P3.5): External input for timer/event counter 1.16180WR (P3.6): External data memory write strobe.17190RD (P3.7): External data memory read strobe.17190Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left c when an external oscillator clock is used.XTAL119211Crystal input 2: Output of the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator (23 NC)VSS20221Ground: Circuit ground potential.P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OPSEN29320Program Store Enable output: Read strobe to external program memory via Port 0 an is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS external program memory. PSEN can sink source 8 LS TTL inputs. <td></td>	
1113OTxD/clock (P3.1): Serial Port data output (asynchronous) or clock output (synchronous)12141131511416115171161801719018200Crystal input 2:Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL218200XTAL1192119221Crystal input 1: Input 1: Input to the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921121-2824-31I/O(A8 to A15)21-2824-31PSEN29320PSEN29320Program Store Enable output: Read strobe to external program memory wite each machine cycle during fetches from external program memory wite control input. It can drive CMOS input external program memory. PSEN is not activated twice each machine cycle during fetches from external program memory. We executing out of external program memory. PSEN is not activations of PSEN are skipped during access to external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. We executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not a	
1214113151141611517116180171901719018200Crystal input 2:Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921191Crystal input 1: Input to the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921120221BroundCrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock is used.XTAL119211P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OProt 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAW/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN29320Program Store Enable output: Read strobe to external program memory. We executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. We executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory.	,
1315IINTT (P3.3): External interrupt 1 or gate control input for timer/event counter 1.1416ITO (P3.4): External input for timer/event counter 0.1517ITI (P3.5): External input for timer/event counter 1.1618OWR (P3.6): External data memory write strobe.1719ORD (P3.7): External data memory read strobe.The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH.XTAL21820OCrystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillatorVss2022IGround: Circuit ground potential.P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN2932OProgram Store Enable output: Read strobe to external program memory. We external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL input. It can drive CMOS).
1416IT0 (P3.4): External input for timer/event counter 0.1517IT1 (P3.5): External input for timer/event counter 1.1618OWR (P3.6): External data memory write strobe.1719ORD (P3.7): External data memory read strobe.The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH.XTAL21820OCrystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator clast standard stand	
1517IT1 (P3.5): External input for timer/event counter 1.16180WR (P3.6): External data memory write strobe.17190RD (P3.7): External data memory read strobe.17190Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator cllator clock signal when an external oscillator cllator clock signal when an external oscillator class the axternal oscillator clock signal when an external oscillator VSS2022IGround: Circuit ground potential.P2.0–P2.7 (A8 to A15)21–2824–31 (23 NC)I/OPSEN2932OProgram Store Enable output: Read strobe to external program memory wie activated (remains HIGH) during fetches executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	
16180WR (P3.6): External data memory write strobe. RD (P3.7): External data memory read strobe. The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH.XTAL218200Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left or when an external oscillator clock is used.XTAL119211Crystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator clock signal when an external oscillator (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN29320Program Store Enable output: Read strobe to external program memory. We 	
17190RD (P3.7): External data memory read strobe. The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH.XTAL218200Crystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left of when an external oscillator clock is used.XTAL119211Crystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator (A8 to A15)P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN2932OProgram Store Enable output: Read strobe to external program memory. We executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory.	
The generation or use of a Port 3 pin as an alternative function is carried out automatic P83C524 provided the associated Special Function Register (SFR) bit is set HIGH.XTAL21820OCrystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left of when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillator clock generator. Receives the external oscillator clock signal when an external oscillator (A8 to A15)P2.0-P2.7 (A8 to A15)21-2824-31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN2932OProgram Store Enable output: Read strobe to external program memory via Port 0 at is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	
XTAL21820OCrystal input 2: Output of the inverting amplifier that forms the oscillator. This pin left of when an external oscillator clock is used.XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillatorVSS2022IGround: Circuit ground potential.P2.0–P2.7 (A8 to A15)21–2824–31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN2932OProgram Store Enable output: Read strobe to external program memory via Port 0 ar is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory two activations of PSEN are skipped during access to external data memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	ally by the
XTAL11921ICrystal input 1: Input to the inverting amplifier that forms the oscillator, and input to the clock generator. Receives the external oscillator clock signal when an external oscillatorV _{SS} 2022IGround: Circuit ground potential.P2.0–P2.7 (A8 to A15)21–2824–31 (23 NC)I/OPort 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups.PSEN2932OProgram Store Enable output: Read strobe to external program memory via Port 0 and is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	pen-circuit
V _{SS} 20 22 I Ground: Circuit ground potential. P2.0–P2.7 (A8 to A15) 21–28 24–31 (23 NC) I/O Port 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups. PSEN 29 32 O Program Store Enable output: Read strobe to external program memory via Port 0 ar is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory. TSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	
P2.0–P2.7 (A8 to A15) 21–28 24–31 (23 NC) I/O Port 2: 8-bit quasi-bidirectional I/O port with internal pull-ups. During access to external (RAM/ROM) that use 16-bit addresses (MOVX @DPTR) Port 2 emits the high-order ad (A8 to A15). Port 2 can sink/source one TTL (=4 LS TTL) input. It can drive CMOS input external pull-ups. PSEN 29 32 O Program Store Enable output: Read strobe to external program memory via Port 0 at is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory two activations of PSEN are skipped during access to external data memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	
is activated twice each machine cycle during fetches from external program memory. W executing out of external program memory two activations of PSEN are skipped during access to external data memory. PSEN is not activated (remains HIGH) during fetches external program memory. PSEN can sink source 8 LS TTL inputs. It can drive CMOS	dress byte
	/hen each from
ALE 30 33 I/O Address Latch Enable output: Latches the LOW byte of the address during access to memory in normal operation. It is activated every six oscillator periods except during ar data memory access. ALE can sink/source 8 LS TTL inputs. It can drive CMOS inputs external pull-up.	external
EA 31 35 I External Access input: When during RESET, EA is held at a TTL HIGH level, the CP out of the internal program ROM, provided the program counter is less than 32768. Wh held at a TTL LOW level during RESET, the CPU executes out of external program me Port 0 and Port 2. EA is not allowed to float.	en <u>EA</u> is
P0.0-0.7 (AD0 to AD7) 32-39 36-43 I/O Port 0: 8-bit open drain bidirectional I/O Port. It is also the multiplexed low-order address bus during accesses to external memory (AD0 to AD7). During these accesses internal activated. Port 0 can sink/source 8 LS TTL inputs.	
V _{DD} 40 44 I Power Supply: +5V power supply pin during normal operation, Idle mode and Power-or	own mode.
To avoid a "latch-up" effect at power-on, the voltage on any pin (at any time) must not b than V_{DD} +0.5V or lower than V_{SS} –0.5V respectively.	e higher
NC – 1, 12, – No connection (PLCC only). 23, 34	

P83C524

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB		SS, SYMB	OL, OR A	LTERNAT	IVE PORT	FUNCTIO	ON LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
DPTR: DPH DPL	Data pointer (2 bytes): Data pointer high Data pointer low	83H 82H									00H 00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*#	Interrupt enable	A8H	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00H
10*"		Doll	BF	BE	BD	BC	BB	BA	B9	B8	
IP*#	Interrupt priority	B8H	_	PS1	PT2	PS0	PT1	PX1	PT0	PX0	x0000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	SDA	SCL	-	-	-	-	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	A15	A14	A13	A12	A11	A10	A9	A8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	T0	INT1	INT0	TxD	RxD	FFH
PCON	Power control	87H	SMOD	-	-	-	GF1	GF0	PD	IDL	0xxx0000B
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program status word	DOH	CY	AC	F0	RS1	RS0	OV	F1	P	00H
RCAP2H# RCAP2L# SBUF	Capture high Capture low Serial data buffer	СВН САН 99Н							,	,	00H 00H xxxxxxxB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial controller	98H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00H
S1BIT#	Serial I ² C data	D9H/RD	SDI	0	0	0	0	0	0	0	x0000000B
		WR	SD0	Х	Х	Х	Х	Х	Х	Х	0xxxxxxB
S1INT#	Serial I ² C interrupt	DAH	INT	Х	Х	Х	Х	Х	Х	Х	0xxxxxxB
			DF	DE	DD	DC	DB	DA	D9	D8	
S1SCS*#	Serial I ² C control	D8H/RD	SDI	SCI	CLH	BB	RBF	WBF	STR	ENS	xxxx0000B
		WR	SD0	SC0	CLH	Х	Х	Х	STR	ENS	00xxxx00B
SP	Stack pointer	81H	05	05	00	00		0.4	00	00	07H
TCON*	Timer control	88H	8F TF1	8E TR1	8D TF0	8C TR0	8B IE1	8A IT1	89 IE0	88 IT0	00H
TCON		001	CF	CE	CD	CC	CB	CA	C9	C8	
T2CON*#	Timer 2 control	С8Н	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
TH0 TH1 TH2# TL0 TL1 TL2# T3#	Timer high 0 Timer high 1 Timer high 2 Timer low 0 Timer low 1 Timer low 2 Watchdog timer	8CH 8DH CDH 8AH 8BH CCH FFH									00H 00H 00H 00H 00H 00H 00H
TMOD	Timer mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	MO	00H
WDCON#	Watchdog control	A5H									A5H


Table 1. 8XC524/8XC528 Special Function Registers

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Table 2. Internal and External Program Memory Access with Security Bit Set

INSTRUCTION	ACCESS TO INTERNAL PROGRAM MEMORY	ACCESS TO EXTERNAL PROGRAM MEMORY	
MOVC in internal program memory	YES	YES	
MOVC in external program memory	NO	YES	

PROGRAM MEMORY

The program memory address space of the P83C524 comprises an internal and an external memory portion. The P83C524 has 16 kbyte of usable program memory on-chip. The program memory can be externally expanded up to 64 kbyte. If the EA pin is held HIGH during RESET, the P83C524 executes out of the internal program memory unless the address exceeds 32767 (notice: Only address 0 to 16383 of the internal program memory can be used). Locations 32768 through 64K are then fetched from the external program memory. If the EA pin is held LOW during RESET, the P83C524 fetches all instructions from the external program memory. Figure 4 illustrates the program memory address space.

ROM CODE PROTECTION

By setting a mask programmable security bit, the ROM content in the 83C524 is protected, i.e., it cannot be read out by any test mode or by any instruction in the external program memory space. The MOVC instructions are the only ones which have access to program code in the internal or external program memory. The EA input is latched during RESET and is 'don't care' after RESET (also if security bit is not set). This implementation prevents reading from internal program code by switching from external program memory to internal program memory during MOVC instruction or an instruction that handles immediate data. Table NO TAG lists the access to the internal and external program memory by the MOVC instructions when the security bit has been set to logical one. If the security bit has been set to a logical 0 there are no restrictions for the MOVC instructions.

INTERNAL DATA MEMORY

The internal data memory is divided into three physically separated segments: 256 bytes of RAM, 256 bytes of AUX-RAM, and a 128 bytes special function area. These can be addressed each in a different way.

- RAM 0 to 127 can be addressed directly and indirectly as in the 80C51. Address pointers are R0 and R1 of the selected register bank.
- RAM 128 to 255 can only be addressed indirectly as in the 80C51. Address pointers are R0 and R1 of the selected register bank.
- AUX-RAM 0 to 255 is indirectly addressed in the same way as external data memory

with the MOVX instructions. Address pointers are R0, R1 of the selected register bank and DPTR. An access to AUX-RAM 0 to 255 will not affect ports P0, P2, P3.6 and P3.7.

An access to external data memory locations higher than 255 will be performed with the MOVX DPTR instructions in the same way as in the 8051 structure, so with P0 and P2 as data/address bus and P3.6 and P3.7 as write and read timing signals. Note that these external data memory cannot be accessed with R0 and R1 as address pointer.

TIMER 2

Timer 2 is functionally equal to the Timer 2 of the 8052AH. Timer 2 is a 16-bit timer/counter. These 16 bits are formed by two special function registers TL2 and TH2. Another pair of special function register RCAP2L and RCAP2H form a 16-bit capture register or a 16-bit reload register. Like Timer 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit C/T2N in the special function register T2CON. It has three operating modes: capture, autoload, and baud rate generator mode which are selected by bits in T2CON.

P83C524

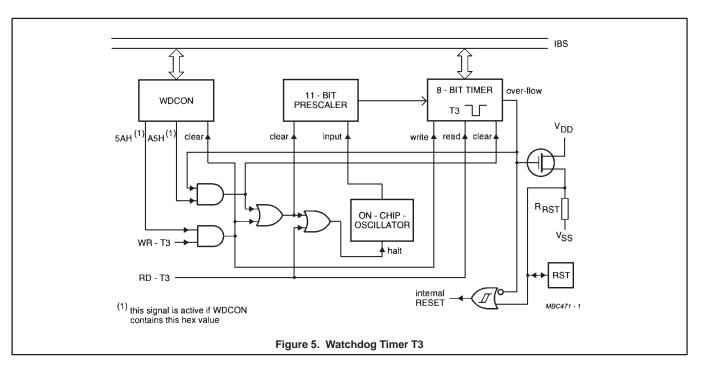
WATCHDOG TIMER T3

The watchdog timer (WDT) (see Figure 5) consists of an 11-bit prescaler and an 8-bit timer formed by special function register T3. The prescaler is incremented by an on-chip oscillator with a fixed frequency of 1MHz. The maximum tolerance on this frequency is -50% and +100%. The 8-bit timer increments every 2048 cycles of the on-chip oscillator. When a timer overflow occurs, the microcontroller is reset and a reset output pulse of 16×2048 cycles of the on-chip oscillator is generated at pin RST. The internal RESET signal is not inhibited when the external RST pin is kept LOW by, for example, an external reset circuit. The RESET signal drives Ports 1, 2 and 3 outputs into the HIGH state and port 0 into high impedance, whether the XTAL-clock is running or not.

The watchdog timer is controlled by special function register WDCON with the direct address location A5H. WDCON can be read and written by software. A value of A5H in WDCON halts the on-chip oscillator and clears both the prescaler and timer T3. After the RESET signal, WDCON contains A5H.

Every value other than A5H in WDCON enables the watchdog timer. When the watchdog timer is enabled, it runs independently of the XTAL-clock.

Timer T3 can be read on the fly. Timer T3 can be written to only if WDCON has previously been loaded with 5AH, otherwise T# and the prescaler are not affected. A successful write operation to T3 also clears the prescaler and WDCON. During a read or write operation addressing T3, the output of the on-chip oscillator is inhibited to prevent timing problems due to asynchronous increments of T3. To prevent an overflow of the watchdog timer, the user program has to reload T3 within periods that are shorter than the programmed watchdog timer internal. This time interval is determined by the 8-bit reload value that is written into register T3.


Watchdog timer interval =

 $\frac{[256 - (T3)] \times 2048}{on - chip oscillator frequency}$

The advantages of this implementation are:

• Only an internal reset connection to the microcontroller core.

- The Power-down mode and the Watchdog (WDT) function can be used concurrently.
- The WDT also monitors the XTAL oscillator. In case of a failure the port outputs are forced to a defined HIGH state.
- Interference will not disable the WDT because it is unlikely that it will force WDCON to A5H.
- Tolerances of the on-chip oscillator can be adjusted by testing the T3 value and adapting the reload value.
- The WDT can be enabled and disabled under control of the user software. This gives the possibility to use both the Watchdog function and the Power-down function.
- The direct address A5H of WDCON and its disable value A5H will not unintentionally be present at a random location in the field of program code, except for immediate data, because the opcode A5H is not used in the instruction set.

BIT-LEVEL I²C INTERFACE

This bit-level serial I/O interface supports the I²C-bus (see Figure 6). P1.6/SCL and P1.7/SDA are the serial I/O pins. These two pins meet the I²C specification concerning the input levels and output drive capability. Consequently, these pins have an open drain output configuration. All the four modes of the I²C-bus are supported:

- master transmitter
- master receiver
- slave transmitter
- slave receiver

The advantages of the bit-level I^2C hardware compared with a full software I^2C implementation are:

- The hardware can generate the SCL pulse
- Testing a single bit (RBF respectively, WBF) is sufficient as a check for error free transmission.

The bit-level I²C hardware operates on serial

- bit level and performs the following functions:filtering the incoming serial data and clock signals
- recognizing the START condition
- generating a serial interrupt request SI after reception of a START condition and the first falling edge of the serial clock
- recognizing the STOP condition
- recognizing a serial clock pulse on the SCL line
- latching a serial bit on the SDA line (SDI)

- stretching the SCL LOW period of the serial clock to suspend the transfer of the next serial data bit
- setting Read Bit Finished (RBF) when the SCL clock pulse has finished and Write Bit Finished (WBF) if there is no arbitration loss detected (i.e., SDA = 0 while SDO = 1)
- setting a serial clock Low-to-High detected (CLH) flag
- setting a Bus Busy (BB) flag on a START condition and clearing this flag on a STOP condition
- releasing the SCL line and clearing the CLH, RBF and WBF flags to resume transfer of the next serial data bit
- generating an automatic clock if the single bit data register S1BIT is used in master mode.

The following functions must be done in software:

- handling the I²C START interrupts
- converting serial to parallel data when receiving
- converting parallel to serial data when transmitting
- comparing the received slave address with its own
- interpreting the acknowledge information
- guarding the I²C status if RBF or WBF = 0.

Additionally, if acting as master:

- generating START and STOP conditions
- handling bus arbitration

 generating serial clock pulses if S1BIT is not used.

Three SFRs control the bit-level I²C interface: S1INT, S1BIT and S1SCS.

S1INT: I²C Interrupt Register

This register is located at address DAH. Refer to Table 1.

S1INT SFR (DAH)

7	6	5	4	3	2	1	0
SI	х	х	х	х	х	х	х

NOTE:

1. **SI bit**: Writing a logic 0 clears this bit, writing a logic 1 has no effect.

S1BIT: Single-bit Data Register with I²C Auto-Clock

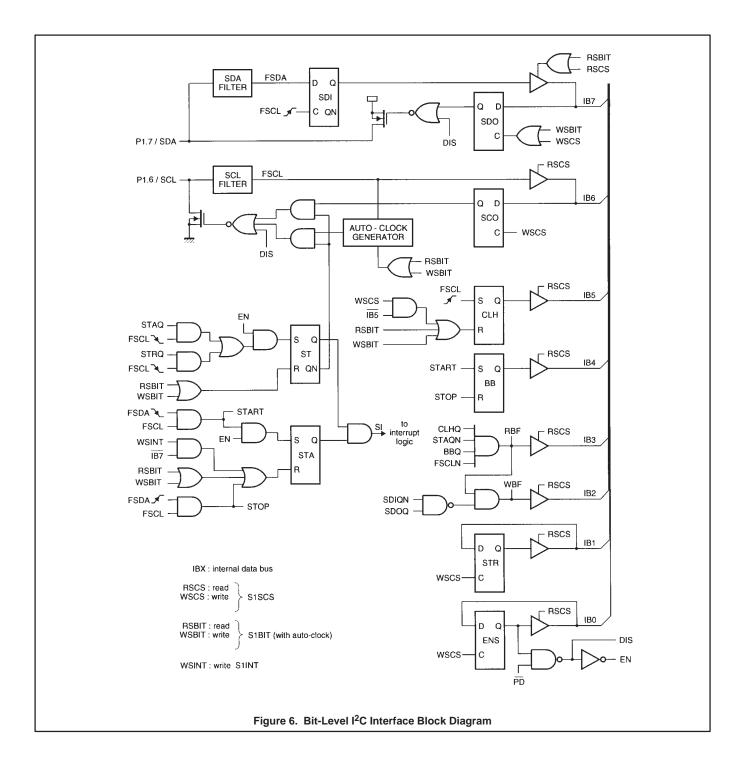
This register is located at address D9H. Refer to Table 2.

S1BIT SFR (D9H)

READ	,										
7	6	5	4	3	2	1	0				
SDI	0	0	0	0	0	0	0				
WRITE											
WRIT											
WRIT	E 6	5	4	3	2	1	0				

NOTE:

 Access of the S1BIT SFR clears SI, CLH, RBF and WBF. It starts the auto-clock if SCO = 0.


Table 1. Description of S1INT Bits

MNEMONIC	BIT	FUNCTION
SI	S1INT.7	Serial Interrupt request (SI) flag: If a START condition occurs the SI flag in the S1INT SFR is set on the falling edge of the filtered serial clock. If SI = 1 is detected during a transfer this can be a "spurious START" error condition. If no transfer is taking place the SI = 1 is a START from an external master. Provided the bits EA and ES1 in IE SFR are set, SI then generates an interrupt so that a slave address receive routine can be started. SI can be cleared by accessing the S1BIT register or by writing "00" to S1INT. Also after reception of a START condition, the LOW period of the clock pulse is stretched, suspending the serial transfer to allow the software to take action. This clock stretching is ended by a read or write access to S1BIT.
-	S1INT.6 to 0	X = undefined during read, don't care during write.

Table 2. Description of S1BIT Bits

MNEMONIC	BIT	FUNCTION
SDO/SDI	S1BIT.7	Serial Data Output (SDO) and the filtered Serial Data Input (SDI). SDI data is latched on the rising edge of the filtered serial clock. S1BIT.7 accesses the same memory locations as S1SCS.7. S1BIT SFR is not bit-addressable.
-	S1BIT.6 to 0	X = don't care.

9

P83C524

Reading or Writing the S1BIT SFR

Reading or writing the S1BIT SFR starts an I²C bit I/O sequence: some flags are cleared (SI, CLH, RBF, WBF), clock stretching is finished and the auto-clock is started. An auto-clock pulse is "OR-ed" with SCO and thus will be output only if the SCO flag has been set to logic 0. SCO = 1 inhibits the auto-clock start, so a dummy read or write of S1BIT SFR can be used to finish clock stretching and clear SI, SLH, RBF and WBF if the auto-clock is not used.

The auto-clock is an active HIGH SCL pulse that starts 28 XTAL periods after the SDI read or SDO write via S1BIT. The duration of the auto-clock pulse is 100 XTAL clock periods. If the SCL line is kept LOW by any device that wants to hold up the bus transfer, the auto-clock counter waits after 20 XTAL clock periods so that the auto-clock pulse length will be at least 80 XTAL clock periods (5 μ s at f_{OSC} = 16MHz).

Every bit I/O should be followed by a RBF or WBF bit test. A bit transfer has been finished successfully if after reading a bit the RBF flag is logic 1 or after writing a bit the WBF flag is logic 1. When after reading a bit the RBF flag is still logic 0, the bus status just before the S1SCS status read can be determined as follows:

- If CLH = 0 then a bus device is still stretching the clock.
- If SCI = 1 while CLH = 1 then the SCL pulse is not finished.
- If BB = 0 there has been a STOP condition.

When after writing a bit the WBF flag is still logic 0 and none of the 3 status conditions mentioned for RBF are found then a "bus arbitration lost" condition will be the cause. This can be determined also from the states of the received bit and the last transmitted bit: "arbitration loss" if SDO = 1 and SDI = 0.

S1SCS: Control and Status Register for the I²C-bus

This register is located at address D8H. Refer to Table 3.

S1SCS SFR (D8H)

READ)						
7	6	5	4	3	2	1	0
SDI	SCI	CLH	BB	RBF	WBF	STR	ENS
WRIT	E						

7	6	5	4	3	2	1	0
SDO	sco	SLH	х	х	х	STR	ENS

NOTES:

 SDI and SCI bits: read-modify-write operations like "SETB bit" or "CLR bit" access SDO and SCO for reading and writing.

2. **CLH bit:** writing a logic 0 clears this bit, writing a logic 1 has no effect.

3. **RBF and WBF bits:** writing a logic 0 to CLH also clears these bits.

4. X = don't care.

MNEMONIC	BIT	FUNCTION
SDO/SDI	S1SCS.7	Serial Data Output and the filtered Serial Data Input. SDI data is latched on the rising edge of the filtered serial clock. S1SCS.7 accesses the same memory locations as S1BIT.7. Access of the data bit via S1SCS will not start an auto-clock pulse.
SCO/SCI	S1SCS.6	Serial Clock Output and the filtered Serial Clock Input. Serial clock output SCO is "OR-ed" with the auto- clock. If SCO = 1 the auto-clock output is inhibited. The internal clock stretching logic and external devices can pull the SCL line LOW. If the auto-clock is not used, the SCL line has to be controlled by setting SCO = 1, waiting for CLH = 1 and setting SCO = 0 after the specified SCL HIGH time. (Because of the input filter, CLH will be set at least 8 XTAL clock periods after the SCL LOW-to-HIGH transition.
CLH	Serial Clock LOW-to-HIGH transition flag: set with a rising edge of the filtered serial clock. CLH = 1 indi- cates that, since the last CLH reset, a new valid data bit has been latched in SDI. CLH can be reset by writ- ing a logic 0 to S1SCS.5 or by a read/write of S1BIT. Clearing CLH also clears RBF and WBF.	
BB	S1SCS.4	Bus Busy flag: indicating that there has been a START condition that was not yet followed by a STOP condition.
RBF	S1SCS.3	Read Bit Finished flag: indicating a successful bit read. RBF = 1 implies the following conditions: - CLH = 1: SCL had a rising edge - SCI = 0: the SCL pulse has finished - SI = 0: no START condition occurred - BB = 1: no STOP condition occurred The RBF flag can be cleared by clearing the CLH flag.
WBF	S1SCS.2	Write Bit Finished flag: indicating a successful bit write. the same conditions as for RBF are true and also no "arbitration loss" condition occurred. Arbitration is lost if a 1 data bit in SDO was over-ruled on SDA by an external device. The WBF flag can be cleared by clearing the CLH flag.
STR	S1SCS.1	STRetch control flag. STR = 1 enabled stretching of all SCL LOW periods. This allows the processor in l^2C slave mode to react on a fast master. The STR flag remains set until cleared by writing a logic 0 to S1SCS.1. The STretch (ST) flag (not readable) pulls the serial clock LOW while ST = 1. The ST flag is set on the falling edge of the filtered serial clock if STR = 1. It is also set after reception of a START condition, regardless of the STR contents. ST is cleared with a read or write of S1BIT.
ENS	S1SCS.0	ENable Serial I/O flag. ENS = 1 enables the START detection and clock stretching logic. ENS = 0 can be used to switch off the I^2 C bus hardware. Note that the SDO and SCO control flags must be set to logic 1 before ENS is set to avoid pulling SCL or SDA lines to logic 0.

Table 3. Description of S1SCS Bits

INTERRUPT SYSTEM

The interrupt structure of the 8XC524 is the same as that used in the 80C51, but includes two additional interrupt sources: one for the third timer/counter, T2, and one for the I^2C interface. The interrupt enable and interrupt priority registers are IE and IP.

IE: Interrupt Enable Register

This register is located at address A8H. Refer to Table 4.

IE SFR (A8H)

7	6	5	4	3	2	1	0
EA	ES1	ET2	ES	ET1	EX1	ET0	EX0

IP: Interrupt Priority Register

This register is located at address B8H. Refer to Table 5.

IP SFR (B8H)

7	6	5	4	3	2	1	0	
-	PS1	PT2	PS	PT1	PX1	PT0	PX0	

Table 4. Description of IE Bits

MNEMONIC	BIT	FUNCTION
EA	IE.7	General enable/disable control: 0 = NO interrupt is enabled. 1 = ANY individually enabled interrupt will be accepted.
ES1	IE.6	Enable bit-level I ₂ C I/O interrupt
ET2	IE.5	Enable Timer 2 interrupt
ES	IE.4	Enable Serial Port interrupt
ET1	IE.3	Enable Timer 1 interrupt
EX1	IE.2	Enable External interrupt 1
ET0	IE.1	Enable Timer 0 interrupt
EX0	IE.0	Enable External interrupt 0

Table 5. Description of IP Bits

MNEMONIC	BIT	FUNCTION
-	IP.7	Reserved.
PS1	IP.6	Bit-level I ² C interrupt priority level
PT2	PT2 IP.5 Timer 2 interrupt priority level	
PS	IP.4 Serial Port interrupt priority level	
PT1	IP.3	Timer 1 interrupt priority level
PX1	IP.2	External Interrupt 1 priority level
PT0	IP.1	Timer 0 interrupt priority level
PX0	IP.0	External Interrupt 0 priority level

The interrupt vector locations and the interrupt priorities are:

Source		Priority within Level
Vector	Address	
0003H	IE0	Highest
002BH	TF2+EXF2	
0053H	SI (I ² C)	
000BH	TF0	
0013H	IE1	
001BH	TF1	
0023H	R1+T1	Lowest

IDLE AND POWER-DOWN OPERATION

Idle mode operation permits the interrupt, serial ports and timer blocks to function while the CPU is halted. The following functions remain active during Idle mode. These functions may generate an interrupt or reset and thus end the Idle mode:

- Timer 0, Timer 1, Timer 2, Watchdog Timer
- UART, I²C-Interface
- External interrupt.

The Power-down operation stops the oscillator. The Power-down mode can only be activated by setting the PD bit in the PCON register.

Idle Mode

The instruction that sets PCON.0 is the last instruction executed in the normal operating mode before Idle mode is activated. Once in the Idle mode, the CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM and all other registers maintain their data during Idle mode. The status of external pins during Idle mode is shown in Table 7.

Power-down Mode

The instruction that sets PCON.1 is the last executed prior to going into the Power-down mode. The oscillator is stopped. Note that the Power-down mode also can be entered when the watchdog has been enabled. The

Power-down mode can be terminated by an external RESET in the same way as in the 80C51 or in addition by any one of the two external interrupts, IE0 or IE1. A reset generated by the WDT terminates the Power-down mode in the same way as an external RESET.

The status of the external pins during Power-down mode is shown in Table 7. If the Power-down mode is activated while in external program memory, the port data that is held in the P2 SFR is restored to Port 2. If the data is a logic 1, the port pin is held HIGH during the Power-down mode by the strong pull-up transistor p1.

Wake-up from Power-down Mode

The Power-down mode of the P83C524 can also be terminated by any one of the two external interrupts, IE0 or IE1. A termination with an external interrupt does not affect the internal data memory and does not affect the Special Function Registers (SFRs).

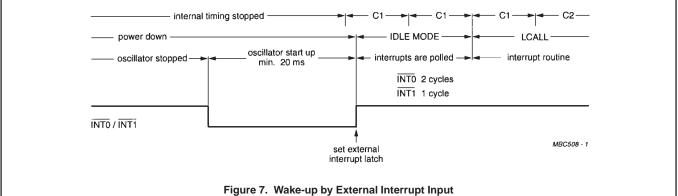

In order to prevent any interrupt priority problems during wake-up, the prioirty of the desired wake-up interrupt should be higher than the priorities of all other enabled interrupt sources. The instruction following the one that put the device into the Power-down mode will be the first one which will be executed after an interrupt has been serviced.

Table 6. Internal Registers Status after a RESET

REGISTER	CONTENTS			
ACC	00H			
В	00H			
DPH, DPL	00H			
IE	00H			
IP	X000 0000B			
PCH, PCL	00H			
PCON	0XX 0000B			
PSW	00H			
P0 to P3	FFH			
SBUF	Indeterminate			
SCON	00H			
SP	07H			
TCON	00H			
TMOD	00H			
TH0, TL0	00H			
TH1, TL1	00H			
T2CON	00H			
TH2, TL2	00H			
RCAP2H, RCAP2L	00H			
S1BIT	X000 0000B			
S1INT	0XXX XXXXB			
S1SCS	XXX0 0000B			
Т3	00H			
WDCON	A5H			

Table 7. Status of the External Pins During Idle and Power-down Modes

MODE	MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3	
Idle	internal	1	1	port data	port data	port data	port data	
Idle	external	1	1	floating	port data	address	port data	
Power-down	internal	0	0	port data	port data	port data	port data	
Power-down	external	0	0	floating	port data	port data	port data	

P83C524

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	Supply voltage range	-0.5	+6.5	V
VI	All Input voltages	-0.5	V _{DD} +0.5	V
P _{TOT}	Total power dissipation	-	1	W
T _{STG}	Storage temperature range	-65	+150	°C
T _{AMB}	Operating ambient temperature range: version FBx version FFx version FHx	0 -40 -40	+70 +85 +125	°C ℃ ℃

DC CHARACTERISTICS FBx (0 to +70°C)

 $V_{DD} = 5V \pm 20\%$; $V_{SS} = 0V$; $T_{AMB} = 0$ to +70°C. All voltages with respect to V_{SS} unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Supply		•			
V _{DD}	Supply voltage range		4.0	6.0	V
	Supply current:				
I _{DD}	Operating modes	$V_{DD} = 6V$; f _{CLK} = 16MHz (notes 1 and 8)	-	35	mA
I _{ID}	Idle mode	V_{DD} = 5V ±20%; f _{CLK} = 16MHz (notes 2 and 8)	-	6	mA
I _{PD}	Power-down mode	$2 \le V_{PD} \le V_{DDMAX}$ (note 3)	-	100	μΑ
Inputs		•	•		
V _{IL}	LOW level input voltage (except EA, P1.6, P1.7)		-0.5	0.2V _{DD} -0.1	V
V _{IL1}	LOW level input voltage		-0.5	0.2V _{DD} -0.3	V
V _{IL2}	LOW level input voltage P1.6, P1.7	note 6	-0.5	0.3V _{DD}	V
V _{IH}	HIGH level input voltage (except RST, XTAL1, P1.6, P1.7)		0.2V _{DD} +0.9	V _{DD} +0.5	V
V _{IH1}	HIGH level input voltage RST, XTAL1		0.7V _{DD}	V _{DD} +0.5	V
V _{IH2}	HIGH level input voltage P1.6, P1.7	note 6	0.7V _{DD}	6.0	V
I _{IL}	Input current logic 0 Ports 1, 2, and 3 (except P1.6 and P1.7)	V _I = 0.45V	-	-50	μΑ
I _{TL}	Input current logic 1 to logic 0 transition Ports 1, 2, and 3 (except P1.6 and P1.7)	V _I = 2.0V	-	-650	μΑ
I _{LI1}	Input leakage current Port 0, EA	0.45 < V _I < V _{DD}	-	±10	μA
I _{LI2}	Input leakage current P1.6 and P1.7	0V < V _I < 6V 0V < V _{DD} < 6V	-	±10	μA

P83C524

DC CHARACTERISTICS FBx (0 to +70°C) (Continued)

 $V_{DD} = 5V \pm 20\%$; $V_{SS} = 0V$; $T_{AMB} = 0$ to +70°C. All voltages with respect to V_{SS} unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Outputs		•			
V _{OL}	Low level output voltage Ports 1, 2, and 3 (except P1.6 and P1.7)	I _{OL} = 1.6mA notes 4 and 7	-	0.45	V
V _{OL1}	LOW level output voltage Port 0, ALE, PSEN	I _{OL} = 3.2mA notes 4 and 7	-	0.45	V
V _{OL2}	LOW level output voltage P1.6 and P1.7	I _{OL} = 3.0mA note 7	-	0.40	V
V _{OH}	HIGH level output voltage Ports 1, 2, and 3	$\begin{split} I_{OH} &= -60 \mu A; \ V_{DD} = 5 V \pm 10\% \\ I_{OH} &= -25 \mu A \\ I_{OH} &= -10 \mu A \end{split}$	2.4 0.75V _{DD} 0.9V _{DD}	- - -	V V V
V _{OH1}	HIGH level output voltage Port 0 in external Bus mode, ALE, PSEN, RST	$I_{OH} = -800\mu$ A; $V_{DD} = 5V \pm 10\%$ $I_{OH} = -300\mu$ A $I_{OH} = -80\mu$ A note 5	2.4 0.75V _{DD} 0.9V _{DD}		V V V
R _{RST}	RST pull-down resistor		50	150	kΩ
C _{I/O}	Capacitance of input buffer	Test frequency = 1MHz; T _{AMB} = 25°C	_	10	рF

NOTES TO DC CHARACTERISTICS (FBx):

The operating supply current is measures with all output pins disconnected; XTAL1 driven with $t_R = t_F = 5ns$; $V_{IL} = V_{SS} + 0.5V$; $V_{IH} = V_{DD} - 0.5V$; XTAL2 not connected; EA = RST = Port 0 + P1.6 + P1.7 = V_{DD} ; the WDT is disabled (by the external RESET). The Idle mode supply current is measured with all output pins disconnected; XTAL1 driven with $t_R = t_F = 5ns$; $V_{IL} = V_{SS} + 0.5V$; The Idle mode supply current is measured with all output pins disconnected; XTAL1 driven with $t_R = t_F = 5ns$; $V_{IL} = V_{SS} + 0.5V$; 1.

2.

 $V_{IH} = V_{DD} - 0.5V$; XTAL2 not connected; the WDT is disabled; $\overline{EA} = RST = V_{SS}$; Port 0 = P1.6 = P1.7 = V_{DD} . The Power-down current is measured with all output pins disconnected; XTAL2 not connected; WDT is disabled; 3. \overline{EA} = RST = XTAL1 = V_{SS}; Port 0 = P1.6 = P1.7 = V_{DD}.

Capacitive loading on Port 0 and Port 2 may cause spurious noise pulses to be superimposed on the LOW level output voltage of ALE, Port 1 and Port 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make a 1-to-0 transition during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

5. Capacitive loading on Port 0 and Port 2 may cause the HIGH level output voltage on ALE PSEN to momentarily fall below the 0.9V VDD specification when the address bits are stabilizing.

The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I²C specification, so a voltage below 0.3 V_{DD} will be recognized as a logic 0 6. while an input above 0.7 V_{DD} will be recognized as a logic 1.

7. Under steady state (non-transient) conditions, IQI must be externally limited as follows:

Maximum I _{OL} per port pin:	10mA
Maximum I _{OL} per 8-bit port:	
Port 0:	26mA
Ports 1, 2, and 3:	15mA

Maximum total I_{OL} for all output pins: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

8. IDDMAX at other frequencies can be derived from Figure 8, where f is the external oscillator frequency in MHz; IDDMAX is given in mA.

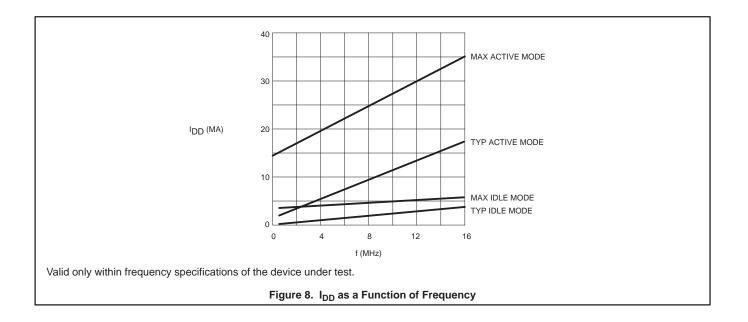
DC CHARACTERISTICS FFx (-40 to +85°C)

 V_{DD} = 5V ±20%; V_{SS} = 0V; T_{AMB} = -40 to +85°C (extended temperature range). All voltages with respect to V_{SS} unless otherwise specified. DC parameters not included here are the same as for the FBx temperature range data.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Inputs					
V _{IL}	LOW level input voltage (except EA, P1.6, P1.7)		-0.5	0.2V _{DD} -0.15	V
V _{IL1}	LOW level input voltage EA		-0.5	0.2V _{DD} -0.35	V
V _{IH}	HIGH level input voltage (except RST, XTAL1, P1.6, P1.7)		0.2V _{DD} +1.0	V _{DD} +0.5	V
V _{IH1}	HIGH level input voltage RST, XTAL1		0.7V _{DD} +0.1	V _{DD} +0.5	V
I _{IL}	Input current logic 0 Ports 1, 2, and 3 (except P1.6 and P1.7)	$V_{1} = 0.45V$	_	-75	μΑ
I _{TL}	Input current logic 1 to logic 0 transition Ports 1, 2, and 3 (except P1.6 and P1.7)	$V_{I} = 2.0V$	_	-750	μΑ

DC CHARACTERISTICS FHx (-40 to +125°C)

 $V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_{AMB} = -40$ to +125°C (extended temperature range). All voltages with respect to V_{SS} unless otherwise specified. DC parameters not included here are the same as for the FBx temperature range data.


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Supply		-	•		
V _{DD}	Supply voltage range		4.5	5.5	V
	Supply current:				
I _{DD}	Operating modes	V _{DD} = 5.5V; f _{CLK} = 16MHz (note 1)	-	35	mA
I _{ID}	Idle mode	V _{DD} = 5V ±10%; f _{CLK} = 16MHz (note 2)	-	6	mA
I _{PD}	Power-down mode	$2 \le V_{PD} \le V_{DDMAX}$ (note 3)	-	150	μΑ
Inputs			-		
V _{IL}	LOW level input voltage (except EA, P1.6, P1.7)		-0.5	0.2V _{DD} -0.25	V
V _{IL1}	LOW level input voltage EA		-0.5	0.2V _{DD} -0.45	V
V _{IH}	HIGH level input voltage (except RST, XTAL1, P1.6, P1.7)		0.2V _{DD} +1.0	V _{DD} +0.5	V
V _{IH1}	HIGH level input voltage RST, XTAL1		0.7V _{DD} +0.1	V _{DD} +0.5	V
I _{IL}	Input current LOW Ports 1, 2, and 3 (except P1.6 and P1.7)	V ₁ = 0.45V	-	-75	μΑ
I _{TL}	Input current logic 1 to logic 0 transition Ports 1, 2, and 3 (except P1.6 and P1.7)	V ₁ = 2.0V	-	-750	μΑ

NOTES:

1. See notes 1 and 8 of the FBx DC characteristics table.

2. See notes 2 and 8 of the FBx DC characteristics table.

3. See note 3 of the FBx DC characteristics table.

AC CHARACTERISTICS

 $\begin{array}{l} \mathsf{FBx:} \quad \mathsf{V}_{\mathsf{DD}} = \mathsf{5V} \pm 20\%; \, \mathsf{V}_{\mathsf{SS}} = \mathsf{0V}; \, \mathsf{T}_{\mathsf{AMB}} = \mathsf{0} \text{ to } + 70^\circ \mathsf{C}; \, \mathsf{t}_{\mathsf{CK}} \text{ min.} = \mathsf{63ns.} \\ \mathsf{FFx:} \quad \mathsf{V}_{\mathsf{DD}} = \mathsf{5V} \pm 20\%; \, \mathsf{V}_{\mathsf{SS}} = \mathsf{0V}; \, \mathsf{T}_{\mathsf{AMB}} = -40 \text{ to } + 85^\circ \mathsf{C}; \, \mathsf{t}_{\mathsf{CK}} \text{ min.} = \mathsf{63ns.} \\ \mathsf{FHx:} \quad \mathsf{V}_{\mathsf{DD}} = \mathsf{5V} \pm 10\%; \, \mathsf{V}_{\mathsf{SS}} = \mathsf{0V}; \, \mathsf{T}_{\mathsf{AMB}} = \mathsf{0} \text{ to } + 125^\circ \mathsf{C}; \, \mathsf{t}_{\mathsf{CK}} \text{ min.} = \mathsf{63ns.} \\ \mathsf{All} \text{ versions Fx:} \quad \mathsf{C}_{\mathsf{L}} = 100\mathsf{pF} \text{ for Port 0, ALE and } \overline{\mathsf{PSEN}}; \, \mathsf{C}_{\mathsf{L}} = 80\mathsf{pF} \text{ for all other outputs unless otherwise specified.} \\ \mathsf{All} \text{ versions find} = \mathsf{All} \text{ versions find} = \mathsf{All} \text{ versions for all other outputs unless otherwise specified.} \end{array}$

t_{CK} min. = 1/f max. (maximum operating frequency); t_{CK} = clock period.

SYMBOL	DADAMETED	16	MHz	12	MHz	VARIAB	LE CLOCK	
STMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
External p	rogram memory							
t _{LHLL}	ALE pulse duration	85	-	127	-	2 t _{CK} –40	-	ns
t _{AVLL}	Address set-up time to ALE	8	-	28	-	t _{CK} –55	-	ns
t _{LLAX}	Address hold time after ALE	28	-	48	-	t _{CK} –35	-	ns
t _{LLIV}	Time from ALE to valid instruction input	-	150	-	233	-	4 t _{CK} –100	ns
t _{LLPL}	Time from ALE to control pulse PSEN	23	-	43	-	t _{CK} -40	-	ns
t _{PLPH}	Control pulse duration PSEN	143	-	205	-	3 t _{CK} –45	-	ns
t _{PLIV}	Time from PSEN to valid instruction input	-	83	-	145	-	3 t _{CK} –105	ns
t _{PXIX}	Input instruction hold time after PSEN	0	-	0	-	0	-	ns
t _{PXIZ}	Input instruction float delay after PSEN	-	38	-	59	-	t _{CK} –25	ns
t _{AVIV}	Address to valid instruction input	-	208	-	312	-	5 t _{CK} –105	ns
t _{PLAZ}	Address float time to PSEN	-	10	-	10	-	10	ns
External d	ata memory				·			
t _{LHLL}	ALE pulse duration	85	-	127	-	2 t _{CK} –40	-	ns
t _{AVLL}	Address set-up time to ALE	8	-	28	-	t _{CK} –55	-	ns
t _{LLAX}	Address hold time after ALE	28	-	48	-	t _{CK} -35	-	ns
t _{RLRH}	RD pulse duration	275	-	400	-	6 t _{CK} –100	-	ns
t _{WLWH}	WR pulse duration	275	-	400	-	6 t _{CK} –100	-	ns
t _{RLDV}	RD to valid data input	-	148	-	252	-	5 t _{CK} –165	ns
t _{RHDX}	Data hold time after RD	0	-	0	-	0	-	ns
t _{RHDZ}	Data float delay after RD	-	55	-	97	-	2 t _{CK} –70	ns
t _{LLDZ}	Time from ALE to valid data input	-	350	-	517	-	8 t _{CK} –150	ns
t _{AVDV}	Address to valid data input	-	398	-	585	-	9 t _{CK} –165	ns
t _{LLWL}	Time from ALE to RD or WR	138	238	200	300	3 t _{CK} –50	3 t _{CK} +50	ns
t _{AVWL}	Time from address to RD or WR	120	-	203	-	4 t _{CK} –130	-	ns
t _{WHWL}	Time from RD or WR HIGH to ALE HIGH	23	103	43	123	t _{CK} –40	t _{CK} +40	ns
t _{QVWX}	Data valid to WR transition	3	-	23	-	t _{CK} –60	-	ns
t _{QVWH}	Data set-up time before WR	288	-	433	-	7 t _{CK} –150	-	ns
t _{WHQX}	Data hold time after WR	13	-	33	-	t _{CK} –50	-	ns
t _{RLAZ}	Address float delay after RD	-	0	-	0	-	0	ns

NOTE:

1. The maximum operating frequency is limited to 16MHz and the minimum to 1.2MHz (all versions Fxx).

P83C524

I²C CHARACTERISTICS (bit-level)

SYMBOL	PARAMETER	INPUT	OUTPUT	I ² C SPEC.	UNIT		
SCL Timin	Ig	•	•	•	•		
thd;sta	START condition hold time	≥ 14 t _{CK} ; note 1	\geq 14 t _{CK} ; note 1 note 2				
t _{LOW}	SCL LOW time	≥ 16 t _{CK}	note 2	≥ 4.7	μs		
t _{HIGH}	SCL HIGH time	≥ 14 t _{CK} ; note 1	≥ 80 t _{CK} ; note 3	≥ 4.0	μs		
t _{RC}	SCL RISE time	≤ 1; note 4	note 5				
t _{FC}	SCL FALL time	≤ 0.3; note 4	≤ 0.3; note 4 ≤ 0.3; note 6				
SDA Timir	ng			•			
t _{SU;DAT}	Data set-up time	≥ 250 ns	note 2	≥ 250	ns		
t _{HD;DAT}	Data hold time	≥0 ns	note 2	≥ 0	ns		
t _{SU;STA}	Repeated START set-up time	≥ 14 t _{CK} ; note 1	note 2	≥ 4.7	μs		
t _{SU;STO}	STOP condition set-up time	≥ 14 t _{CK} ; note 1	note 2	≥ 4.0	μs		
t _{BUF}	Bus free time	\geq 14 t _{CK} ; note 1	note 2	≥ 4.7	μs		
t _{RD}	SDA RISE time	≤ 1; note 4	note 5	≤ 1.0	μs		
t _{FD}	SDA FALL time	≤ 300ns; note 4	≤ 0.3; note 6	≤ 0.3	μs		

NOTES:

1. At f_{CLK} = 3.5MHz, this evaluates to 14 × 286ns = 4 μ s, i.e., the bit-level I²C interface can respond to the I²C protocol for $f_{CLK} \ge 3.5$ MHz.

2. This parameter is determined by the user software, it has to comply with the i²C specification.

 This value gives the auto-clock pulse length which meets the I²C specification for the specified XTAL1 clock frequency range. Alternatively, the SCL pulse may be timed by software.

4. Spikes on SDA and SCL lines with a duration of less than $4 \times f_{CLK}$ will be filtered out.

5. The RISE time is determined by the external bus line capacitance and pull-up resistor, it must be $\leq 1 \ \mu$ s.

6. The maximum capacitance on bus lines SDA and SCL is 400 pF.

XTAL1 CHARACTERISTICS

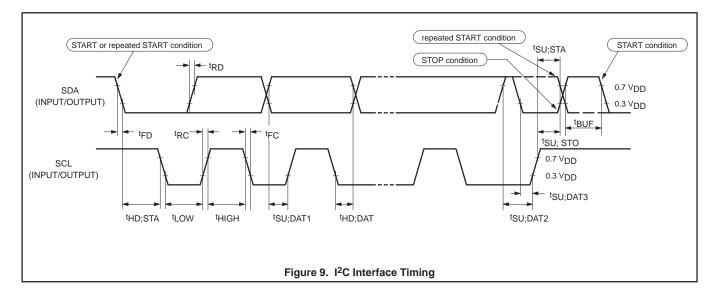
Oscillator circuitry: crystal capacitors: C1 = C2 = 20pF (see Figure 14).

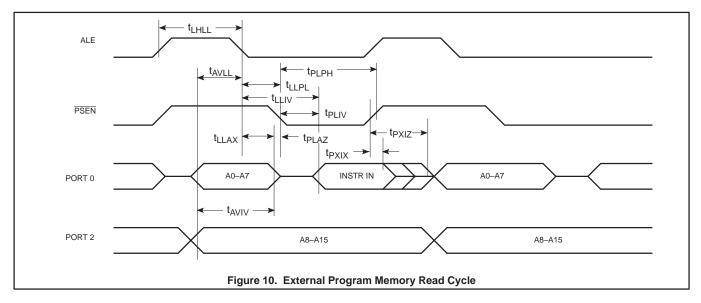
Table 8. External Clock Drive XTAL

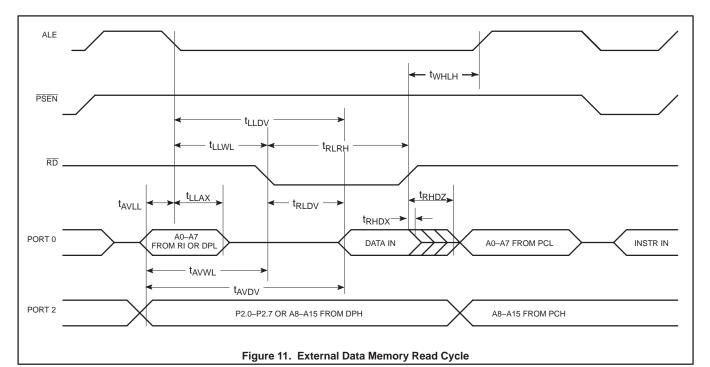
SYMBOL	PARAMETER	VARIABL F = 1.2 T	E CLOCK D 16 MHz	UNIT
		MIN.	MAX.	
f _{CLK}	Clock frequency	1.2	16	MHz
t _{CK}	Clock period	63	833	ns
t _{HIGH}	HIGH time	20	t _{CK} - t _{LOW}	ns
t _{LOW}	LOW time	20	t _{CK} – t _{HIGH}	ns
t _R	RISE time	-	20	ns
t _F	FALL time	-	20	ns
t _{CY}	Cycle time (t _{CY} = 12 t _{CK})	0.75	10	ns

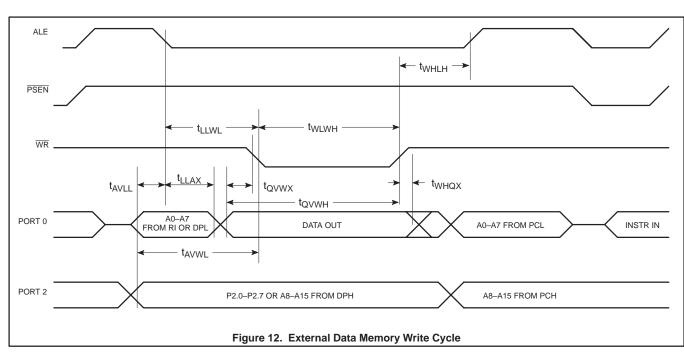
SERIAL PORT CHARACTERISTICS

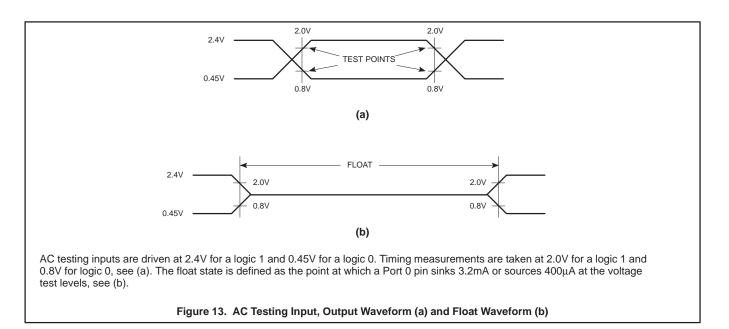
See Table 9 and Figure 15.

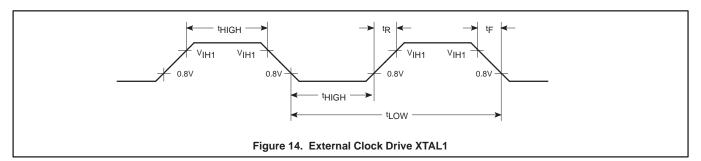

Table 9. External Clock Drive XTAL

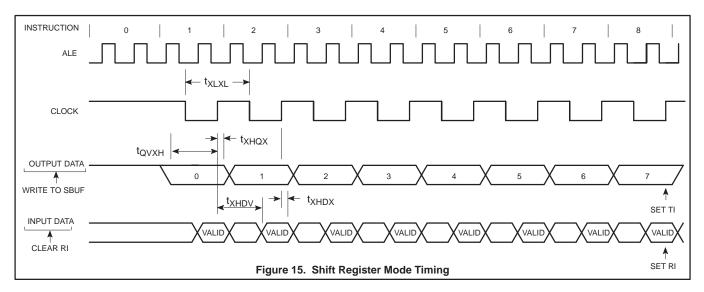

 V_{DD} = 5V ±20%; V_{SS} = 0V; T_{AMB} = 0 to +70°C; Load Capacitance = 80pF.

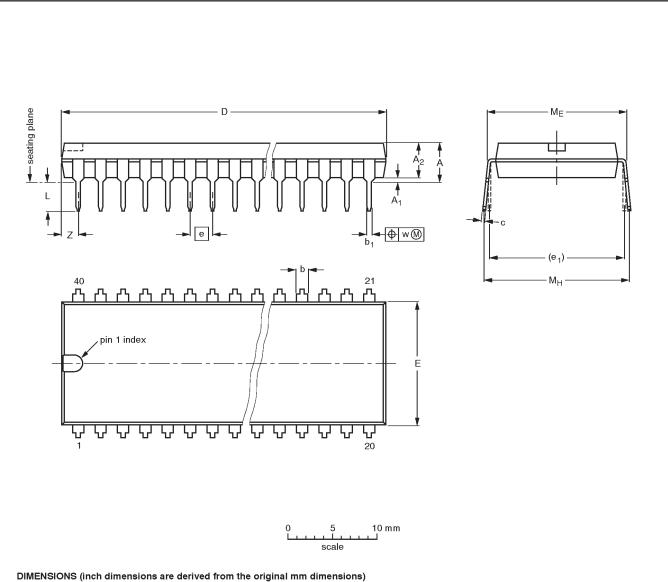

SYMBOL	PARAMETER	12MHz OS	CILLATOR	VARIABLE C	UNIT	
STMBOL	FARAIVIETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{XLXL}	Serial Port clock cycle time	1	-	12 t _{CK}	-	μs
t _{QVXH}	Output data setup to clock rising edge	700	-	10 t _{CK} –133	-	ns
t _{XHQX}	Output data hold after clock rising edge	50	—	2 t _{CK} –117	-	ns
t _{XHDX}	Input data hold after clock rising edge	0	_	0	-	ns
t _{XHDV}	Clock rising edge to input data valid	-	700	-	10 t _{CK} –133	ns


P83C524


TIMING DIAGRAMS







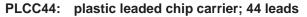
8-bit microcontroller

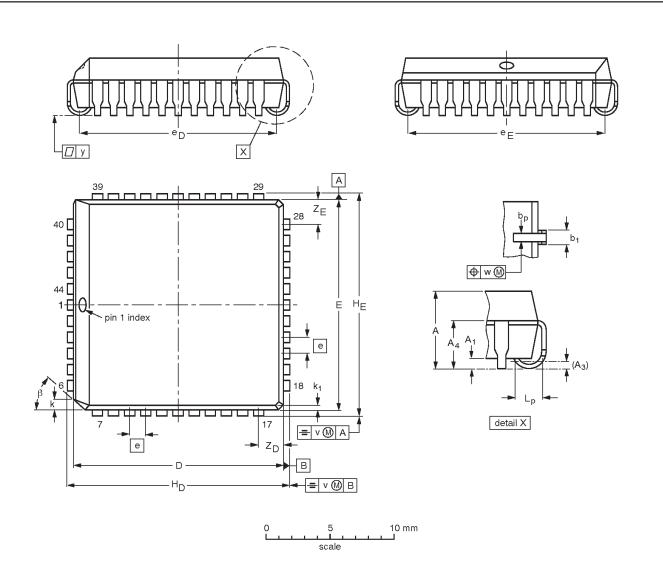
DIP40: plastic dual in-line package; 40 leads (600 mil)

P83C524

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	Е ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.50 51.50	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
inches	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1550E DATE
SOT129-1	051G08	MO-015AJ			-92-11-17 95-01-14

SOT129-1

P83C524

SOT187-2

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	А	A ₁ min.	Α3	A ₄ max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	е _D	еE	HD	Η _E	k	k ₁ max.	Lp	v	w	у	Z _D ⁽¹⁾ max.	Z _E ⁽¹⁾ max.	β
mm	4.57 4.19	0.51	0.25	3.05	0.53 0.33	0.81 0.66	16.66 16.51		1.27	16.00 14.99		17.65 17.40		1.22 1.07	0.51	1.44 1.02	0.18	0.18	0.10	2.16	2.16	45 ⁰
inches	0.180 0.165	0.020	0.01				0.656 0.650		0.05	0.630 0.590	0.630 0.590	0.695 0.685	0.695 0.685	0.048 0.042	0.020	0.057 0.040	0.007	0.007	0.004	0.085	0.085	45

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE						
VERSION	IEC	JEDEC	EIAJ	DROJECTION					
SOT187-2	112E10	MO-047AC				-92-11-17 95-02-25			

P83C524

NOTES

P83C524

NOTES

P83C524

NOTES

	DEFINITIONS									
Data Sheet Identification	Product Status	Definition								
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.								
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.								
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.								

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.